Nhambhat Chaimongkol, Shotiga Pasiphol, & Sirichai Kanjanawasee
Faculty of Education, Chulalongkorn University, Bangkok 10330, Thailand

Introduction
Computerized adaptive testing (CAT) is tailored testing concept, items are selected according to the ability of each examinee. Testing starts with moderate difficult item. If an examinee answers an item correctly, next item that is administered to the examinee will be more difficult, if not, easier item is administered. Testing will continue until meet the stopping criterion, then the testing will stop. (Kanjanawasee, 2012). Even though CAT has many advantages but still lack of ability estimation in GRE and GMAT in 2000 and 2003 respectively. Because CAT estimation based on maximum information which is more complicated when the test is large scale. So, researchers have developed multistage testing (MST) which help decrease over and under ability estimation (Chang, 2014; Zheng, & Chang, 2014). The panels of MST are pre-assembled. So in the large scale testing might have more error because panels were assembled by human. Therefore, in 2014 Zheng and Chang had integrated concept of CAT and MST together, called On-the-Fly assemble Multistage Adaptive Testing or OMST. In this paper we would like to purpose new conceptual framework which combined OMST and reflective feedback together by using a case study of Information Technology Professional Examination (ITPE) only IP level.

Methods
The system was implemented from principle and theory of CAT, MST, OMST, ITPE and reflective feedback. In system development have four sections, Starting from study algorithm of OMST and reflective feedback report, design and develop testing system, validate quality of system and improve, and try out the system respectively. OMST with reflective feedback system consists of five components, first, initial testing, ability examination and items selection, item exposure control, stopping criterion, and reflective feedback report. Moreover, quality of system will be evaluated by three evaluations, heuristic evaluation, user satisfaction of the human-computer interface evaluation and standard evaluation.

Results
The system starts at stage one with moderate items. Then estimate ability of examinees. If standard error (SE) less or equal than 0.3, testing will terminate, if not continue to stage two. Each item from stage two cames from provision ability estimation in first stage by using on the fly assemble algorithm in selection items. In stage two, examinees will continue test 15 items, if standard error less or equal than 0.3, testing will terminate, if not testing will proceed. Testing will continue until standard error less or equal than 0.3. After finished testing, system will reflect instant feedback by test score and recommendation report for information technology occupation.

Conclusion
CAT has effectiveness in administrating items, which are relevant with ability of examinee. Although CAT has more effective but it still lack of ability estimation. OMST is used replace tradition CAT. OMST is not pre-assemble panel or testlet like MST but select items immediately by using computer algorithm after ability estimation. Testing is controlled by psychometric properties as content balance and item exposure. After finish test, system would report instant score of testing and recommendation for career, which is called reflective feedback. In this research applies information technology professional examination level IP. Nevertheless, this research will be used for preparation before real testing, it cannot claim certificate from this CAT system. The system apply new algorithm of CAT and reflective feedback together. In future research may apply this framework with other examination such as driving license.

Reference